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1. Introduction
Today, the use of electric drives with induction motors (IMs) or permanent magnet synchronous motors (PMSMs) 
has become very common in industry. This is due to their very high efficiency and very good control characteristics 
(Orlowska-Kowalska and Dybkowski, 2016). Unfortunately, the use of advanced control methods requires the 
construction of an appropriate power electronics system consisting of many components. Any of these can fail, 
which is why it is important to design fault-tolerant control systems. In these systems, the priority is to ensure that 
the system operates correctly at the earliest possible point after a fault has occurred (Blanke et al., 2006). Tools for 
predicting future system states, and in particular, the values of the state variables, appear to be invaluable. Vector 
control structures such as direct rotor flux-oriented control (DRFOC) or direct torque control require information 
about the present values of state variables, including stator phase currents, in order to function properly. Therefore, 
it is important to develop methods to detect and compensate for faults in current sensors (CSs), for which signal 
prediction methods may be useful.

The need for phase current prediction of electric motors is mainly due to the use of prediction control, which 
has gained popularity in recent years. Li et al. (2016) present a method for predicting the currents of an IM in 
a rectangular x–y synchronous coordinate system, based on its mathematical model. The disadvantage of this 
method, as with all methods based on mathematical models, is the problem of accurately determining the motor 
parameters, which may vary under real operating conditions. Similar methods based on a mathematical model of the 
machine can be found for PMSMs (Ha, 2010; Im and Kim, 2018; Peralta-Sanchez et al., 2009; Wang et al., 2022). 
To make the predictor immune to changes in IM parameters, a Luenberger observer applied to the feedback loop 
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is presented by Yan et al. (2020). By using the Lyapunov stability theory, the problem of the time-varying values of 
the stator resistance and the main inductance of the machine is solved.

Solutions that do not use the mathematical model of the motor can also be found in the literature. A method 
for predicting IM stator currents using the difference between the present and historical values of current samples 
is presented by Wang et al. (2020). The method is robust to changing machine parameters, which is important 
in real-world conditions. In a previous paper (Li et al., 2019), a method for the prediction of stator currents in the 
FOC control structure of a PMSM is described. This uses the delay information introduced by the converter and 
the pulse-width modulator (PWM), and then the equations describing the future value of the current sample are 
determined. The equations do not use a mathematical model; however, the exact determination of the mentioned 
delay values is required.

In the literature presented above, current prediction algorithms are usually designed to be as computationally 
efficient as possible and to best represent future current measurements. This approach is necessary due to the 
use of prediction signals in control. However, to the best of our knowledge, there is a lack of information in the 
literature on methods for predicting currents in IMs or PMSMs using artificial neural networks (NNs), including long 
short-term memory (LSTM) networks, which deal very well with time series. However, there is little literature in 
the field of electric drive automation on the prediction of signals using these networks. An example is the method 
described by Li and Akilan (2022), in which the LSTM network was used to predict the winding, tooth, and stator 
yoke temperatures, as well as the temperature of permanent magnets in a PMSM.

Although the presented literature is rich in model-based and model-free solutions in the area of predictive 
control, none of them has been used for prediction of stator current due to different fault types of CS. Nevertheless, 
these types of methods are commonly used for CS fault detection and compensation in IM and PMSM drives, 
and a review of the recent proposals can be found in the Introduction of the article by Adamczyk and Orlowska-
Kowalska (2022). However, there is a lack of fault classification methods based on NNs that use current prediction. 
For example, a previous work (Skowron et al., 2022) indeed uses an NN for classification, but as mentioned, the 
developed method does not use current prediction values. Therefore, the main reason for the research presented in 
this article was to explore the possibility of predicting stator currents in the IM drive using LSTM networks, including 
selected CS fault types such as gain change, offset, and saturation. During the research, it was discovered that 
changing the sampling frequency of the training and testing signals significantly affects the output values of the 
network. The simulations carried out can help to understand how artificial NNs should be designed and trained so 
that the results obtained meet the designer’s expectations.

After this Introduction, Section 2 describes the methodology for simulating the phase current signals used 
to train the network. Section 3 presents a description of the basic LSTM cell and its training method. Section 4 
provides information on the adopted network structure, its operation, and the training parameters used. The results 
of the simulation studies, including the DRFOC system, are presented in Section 5. The article ends with the 
conclusions of the presented studies.

2. Description of the Methodology for Simulating Current Signals
The research carried out in this paper was based on the mathematical model of an IM, which is usually developed 
based on well-known simplifying assumptions (Leonhard, 1996). Taking these into account, this model can be 
represented in a stationary coordinate system (a–b) using spatial vectors, in relative units [p.u.] as follows:
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where us, is – stator voltage and current vector; ir – rotor current vector; Ys, Yr – stator and rotor fluxes; rs, rr – stator 
and rotor windings’ resistance, respectively; lm, ls, lr – main, stator, and rotor inductances, respectively; wm – rotor 
angular speed; TN = 1/(2pfsN) – electromechanical constant; Tm – mechanical constant; and tL – load torque.

Parameters of the tested motor are given in Table A1 of the Appendix.
In this study, the time waveforms of the phase currents measured by the CSs in the DRFOC structure of the 

IM and the signals from the stator current estimator, i.e., the virtual CS (VCS) (Adamczyk and Orlowska-Kowalska, 
2019) were used. Signals from the VCS estimator were converted from the a–b coordinate system to the three-
phase A–B–C system according to the following formula:
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where isA, isB are the currents measured in the stator winding phases, respectively, and isα, isβ are the currents 
converted to the a–b system, respectively.

During the research, artificial NNs were used, the performance of which largely depends on the quantity and 
quality of the training data used in their learning process. To omit the time-consuming step of simulating the operation 
of the drive under various operating conditions and stator CS faults, it was decided that the current signals required 
for training would be generated by software.

2.1. Phase currents of the resistor–inductor–electromotive force (RLE) receiver
The steady-state IM current signal is a sinusoidal signal, whose frequency depends on the rotor angular velocity 
and amplitude depends on the load torque. Furthermore, there are harmonics in the signal related to the operation 
of the PWM and voltage inverter of the order k = 1 + 6g, where g = 0, ±1, ±2,…. Thus, the phase current of an IM, 
which for a frequency converter is an RLE-type load (Figure 1), can be described by the following formula (Tunia 
et al., 1982):
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 - amplitude of the first harmonic of the current; Ro – resistance of the load; Lo – inductance 

of the load; Um = 2Ud  /p – amplitude of the first harmonic of the phase voltage of the star connected receiver; 
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Fig. 1. Scheme of the voltage inverter with RLE-type load.
RLE, resistor–inductor–electromotive force.
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Eom – amplitude of sinusoidal voltage source eo; φE – phase shift angle between the voltage eo and the first harmonic 
of inverter output voltage; φ1 = atan(Lo/Ro); φk = atan(kwLo/Ro); w – pulsation of the first harmonic of voltage and 
current.

As the harmonic order k increases, its amplitude decreases, so the influence of higher harmonics on the form of 
the current signal is much smaller than in the case of harmonics of lower orders. In the case of the inverter phase 
current, the phase shift of successive harmonics φk, which depends on the ratio of inductance and load resistance 
of the inverter, as well as on the harmonic order, must also be taken into account.

Given the above considerations, it was assumed that harmonics of orders k = 5, 7, 11, 13, 17, 19, 23, 25, 29, 
31 would be added to the generated current signals. The amplitudes of harmonics of higher orders are relatively 
small and do not significantly affect the shape of the current. To check the generalisability of the proposed method 
using the LSTM network, it was assumed that the parameters of the virtual receiver would take the values Eom = 0 V, 
Ro = 1 W, and Lo = 0.1 H. Then, the amplitudes of subsequent harmonics were determined in relation to the 
amplitude of the first harmonic according to the following formula:
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To diversify the results obtained, the amplitudes of the successive harmonics were randomly drawn from the 
range [hmin, hmax], where hmin = hnominal/2 and hmax = 3hnominal/2. Noise was also added to each signal sample, with a 
random value described by a uniform distribution with a range of ±0.02 p.u.

To represent the different operating conditions of the drive, sinusoidal signals (one full period) were generated 
representing signals estimated by the VCS estimator with different frequencies f = 5, 20, 35, and 50 Hz and current 
amplitudes expressed in relative units Im = 0.4, 0.55, 0.7, 0.85, and 1.0 p.u. The signal was sampled at a frequency 
of fp = 8 kHz. The successive stages of signal generation are shown in Figure 2.

(a) 

 

(c) (d) 

 

(b)

Fig. 2. Data generation process: basic sinusoidal signal with frequency f = 50 Hz and amplitude Im = 1 p.u. (a), signal containing higher harmonics 
(b), signal containing higher harmonics and noise (c), and harmonic waveforms that have been added to the basic signal (d).
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2.2. Phase current signals measured by faulty CSs
In addition to sinusoidal signals representing the estimates of phase currents, waveforms were also generated 
that could be recorded by a faulty CS. The principle of operation of typical CSs used in industry is to measure the 
magnetic field generated by the current flowing in the primary circuit. By design, a distinction is made between open-
loop and closed-loop CSs. The second type of sensor has properties that compensate for the effects of temperature 
drift (Ziegler et al., 2009). The internal structure of typical closed-loop current transducers used in industry consists 
of a magnetic core with a wound coil, a Hall sensor located in the air gap of the core, an operational amplifier, and 
a measurement resistor (Figure 3).

The magnetic field generated by the current ic flowing in the primary circuit closes in the core and acts on a Hall 
sensor located in the air gap of the core. An operational amplifier then amplifies the Hall voltage, forcing the current 
to flow through the coil wound on the core. The flowing current produces a magnetic flux that compensates for the 
flux produced by the primary circuit. By measuring the voltage drop across a resistor Rs connected in series with 
the coil circuit, the value of the current that flows in the primary circuit can be determined. The way in which the 
sensors operate and their design allows six different types of faults to be distinguished (Lee and Ryu, 2003), as 
shown in Table 1.

The waveforms of the faulty signals that were generated by the software included the following faults: change 
in sensor gain (gain change) caused by a change in the resistance of the measurement resistor, e.g., as a result of 
temperature changes; addition of a DC component to the measurements (offset) caused by an asymmetry in the 

Fault type Mathematical model

Open circuit 0

Gain change sin( )mI te w

Offset sin( )m offsetI t Iw +

Saturation

for sin( )

sin( ) for sin( )

for sin( )

sat m sat

m m sat

sat m sat

I I t I

I t I t I

I I t I

w

w w

w

 ≥


<
− ≤ −

Disconnections 0 sin( )mI tw  

Noise sin( ) ( )mI t n tw +

Table 1. Types of CS faults.
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Fig. 3. Operating diagram of a typical current feedback converter. Magnetic core (1), Hall sensor (2), operational amplifier (3), and measurement 
resistor (4).
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Hall sensor voltage, e.g., also as a result of temperature changes; and saturation of the sensor core (saturation) 
caused by demagnetisation of the core, e.g., as a result of current flow in the primary circuit with a value exceeding 
the limits allowed by the sensor manufacturer. Example fault signals generated for the frequency f = 50 Hz and 
amplitude Im = 1 p.u. are shown in Figure 4.

3. Basic Information on LSTM Networks
3.1. Structure of the LSTM network
LSTM networks are a specially modified version of recurrent NNs (RNNs). Their advantage over RNNs lies in the 
ability to determine the effect of successive input signal samples on the network response. This means that during 
the processing of successive input vectors, information that is irrelevant or of little relevance to the task being 
performed may appear. The LSTM network is then able to reduce the impact of such information on the network 
output, which will be the conclusion of all the input vectors that appear. This property is particularly useful in signal 
processing.

An LSTM network is made up of cells whereby each cell decides which information is relevant and should be 
further processed and which information should be ignored. Every cell is composed of gates, and a distinction is 
made between an input gate, an output gate, and a forget gate, as well as a cell state (Figure 5). Data processing 
in the basic version of the LSTM cell can be divided into four stages, as described below.

The first step is to decide whether the output hj-1 returned in the previous calculation step is relevant for further 
information processing. The forgetting gate is responsible for this. The new input vector xj and the previous output 
vector hj-1 are multiplied by the respective weight matrices Wfh and Wfx, and then the resulting values are summed 
together with the bias vector bf. The value obtained is given as the argument of the sigmoidal activation function 
y = s(x), whose values are in the interval (0,1), allowing the calculation of the value ft of the forgetting gate according 
to the following formula:

 1( )j fx j fh j ff W x W h bs −= + +  . (10)

(a) (b) 

  

(c) (d) 

  

Fig. 4. Software-generated signals due to stator CS fault: no fault (a), gain change with ε =0.7 (b), offset with Ioffset = –0.3 p.u. (c), and saturation with 
Isat = 0.8 p.u. (d). The frequency of the fundamental harmonic was f = 50 Hz, and its amplitude was Im = 1 p.u. 
CS, current sensor; p.u., per unit; VCS, virtual CS.
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In the next step, a decision is made as to which information to keep in the present cell state. This is done 
by calculating the value of the input gate ij and the vector associated with the cell state update according to the 
following relationships:

 1( )j ix j ih j ii W x W h bs −= + +  , (11)

 1tanh( )j cx j ch j jc W x W h b−= + +  . (12)

Once the values fj, ij, and jc  have been determined, the new cell state cj can be calculated by multiplication of the 
corresponding elements of the vectors, which is the Hadamard product denoted by ⊙:

 1j j j j jc f c i c−= + 
   . (13)

The first multiplication in Eq. (13) corresponds to the operation of forgetting irrelevant information for the cell. 
The second multiplication takes into account the relevance of the new information by which the state of the cell 
needs to be updated.

In the last step, the output vector hj of the cell is determined. Its value is influenced by the present state of cell 
cj, the input vector xj, and the previous output of cell hj-1. To determine the output vector hj, it is necessary first to 
calculate the value of the output gate oj and the value of the hyperbolic tangent function with the argument being 
the present state of the cell cj:

 1( )j ox j oh j oo W x W h bs −= + +  , (14)

 tanh( )j j jh o c=   . (15)

3.2. Training methods for LSTM networks
LSTM cells are constructed from gates whose activation functions are differentiable functions. Therefore, each cell 
can be treated as a certain differentiable approximating function that can be trained using classical optimisation 
methods. These methods require the definition of an objective function E(q), and one of the simplest methods for 
training the network is the gradient descent method. In the mentioned method, in each iteration of the training 
process, the vector of network parameters is updated towards the negative values of the gradient of the objective 
function according to the following formula:

 ( )1j j jEq q a q+ = − ∇  , (16)

where q – parameter vector, j – iteration number, a >0 – learning rate, and E(q) – objective function.
In LSTM networks, it is very difficult to obtain satisfactory results when training them using the gradient descent 

method due to the existence of recursion in the network, whereby the gradient of the objective function can quickly 
reach very large (gradient explosion) or very small values (vanishing of the gradient). This in turn leads to parameter 
vector values that are far from optimal values (Goodfellow et al., 2016). Another disadvantage is the constant 
learning rate a. When the gradient of the objective function takes on small values, further training of the network is 
very slow. To speed up the training process, optimisation algorithms that have a learning rate adaptation mechanism 
can be used. One such algorithm is ADAM (a name derived from the term “adaptive moment estimation”) (Kingma 
and Ba, 2015), whose successive steps to update the parameters q are described by Eqs. (17)–(21).

 ( ) ( )1 1 11j j jm m Eb b q−= + − ∇  , (17)

 ( ) ( ) 2
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The algorithm updates the exponential moving average of the gradient mj and the square of the gradient vj at 
each step. The parameters b1, b2 ∈ [0,1) control how quickly the effect of historical values on the present value of 
the moving average decreases. The vectors m0 and v0 are initialised with zeroes. Therefore, the moving average 
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Fig. 6. Structure of the stator current predictor using the LSTM network.
LSTM, long short-term memory.

LSTM cell

output gateinput gateforget gate

∑ 

Wfx W� bf

σ

∑ 

Wix Wih bi

σ

∑ 

Wox Woh bo

σ

∑ 

Wix Wih bi

tanh

∏ 

∏ ∑ 

tanh

∏ 

xj

cj-1 cj

hjhj-1

    
 

Previous cell 
state

Previous cell 
output

Input vector

Output vector

Cell state

 
Fig. 5. Scheme of the LSTM cell. 
LSTM, long short-term memory.
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is shifted towards zero, and the values ˆ jm ,ˆ jv  are calculated for correction. The values of 1
jb  and 2

jb  denote an 
exponentiation, where the exponent is j. The factor ε in Eq. (21) takes on very small values and is added to avoid 
division by zero. In many cases, a = 0.001, b1 = 0.9, b2 = 0.999, and ε = 10–8 are good values with which to begin 
an attempt to train the network; all the networks described in the following sections were also trained with these 
parameters.

4. LSTM Network Training and Testing Methodology Applied to IM Stator 
Current Prediction

The structure of the developed network included an input layer of dimension 2, an LSTM layer of dimension nLSTM 
(which was modified in the study), a fully connected layer, and an output layer of dimension 2 (Figure 6).

The input vector X consisted of two values, which were samples of the signal at time instant j:

 

( )
( )

( )

VCS

CS

i j
X j

i j
 

=  
  

, (22)

(a)

(d)(c)

(b)

Fig. 7. Histograms showing the distribution of RMSE values on Ytrain (a, b) and Ytest (c, d) training data for different structures containing nLSTM = 8 and 
nLSTM = 16 LSTM cells and trained for two different training signal sampling frequencies ( LSTM

trainf  = 1 kHz and LSTM
trainf  = 8 kHz) and tested for signals sampled 

at LSTM
testf  = 1 kHz (a, c) and LSTM

testf  = 8 kHz (b, d). 
LSTM, long short-term memory; RMSE, root mean square error.
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(c) (d) 

 

(e) (f) 

 

(g) (h) 

 

(a) (b)

Fig. 8. Current signal prediction waveforms by networks containing different numbers of LSTM cells and trained for different training signal decimation 
values. Current signal parameters: f = 35 Hz, Im = 0.4 p.u., and offset damage with Ioffset = 0.3 p.u. Network operating frequency on test data: LSTM

testf  = 
8 kHz (a, b, c, d) and LSTM

testf  = 1 kHz (e, f, g, h). 
CS, current sensor; LSTM, long short-term memory; VCS, virtual CS.
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where: iVCS – the value of the sinusoidal current signal estimated with VCS, and iCS – the value of the measured 
current signal (e.g., in the case of a saturation-type fault). The output vector Y contained the prediction values of the 
signals fed into the network input, which were subscripted “pred”:

 

( 1)
( )

( 1)

VCS
pred
CS
pred

i j
Y j

i j
 +

=  +   
. (23)

The current signals used in the training process were generated by software, as described in Section 2. Four 
different frequencies (f = 5, 20, 35, and 50 Hz) and five different amplitudes (Im = 0.4, 0.55, 0.7, 0.85, and 1.0 p.u.) 
of the first harmonic were considered. For each amplitude and frequency, in addition to the correct signals, faulty 
signals were generated considering six different values of the gain ε at the gain fault (ε = 0.5, 0.7, 0.9, 1.1, 1.3, and 
1.5), six different values of the constant Ioffset in offset damage (Ioffset = -0.3, -0.2, -0.1, 0.1, 0.2, and 0.3 p.u.), and six 
different values of the core saturation Isat in saturation damage (Isat = 0.70, 0.75,0.80, 0.85, 0.90, and 0.95 p.u.). The 
signal generator sampling frequency was fp = 8 kHz. The length of the generated signals was one period of the first 

 
Fig. 10. Simulated rotor speed waveform (blue) and set load torque (red).
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Fig. 9. DRFOC structure used in the study.
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harmonic. The data set prepared this way was randomly divided into training data, further denoted in the text as Xtrain 
(342 signals: 90%) and test data Xtest (38 signals: 10%). The corresponding training output data Ytrain and Ytest were 
generated by shifting the input vector sequence by one sample.

During the training process, the input and output data were normalised by subtracting their mean value and 
dividing by the standard deviation according to the following relationships:

 
train X

train
X

XX m

s

−
=

 
, (24)

 
train Y

train
Y

YY m

s

−
=

 
, (25)

where trainX , trainY  – input and output training vectors, respectively, after normalisation; mX, mY – mean values of 
the input and output training set, respectively; sX, sY – standard deviation from the input and output training set, 
respectively. When testing the network, the prediction results obtained are normalised values; so, in order to obtain 
the real values, the inverse operation to Eq. (25) must be applied on the output data according to the following formula:

 Y YY Y s m= ⋅ +  . (26)

 

  

 (c) 

    

(b)          

(a)

Fig. 11. Simulations of the LSTM network in the case of an undamaged CS: nLSTM = 16, LSTM
trainf  = 8  kHz, LSTM

testf  = 8  kHz (yellow); and nLSTM = 16,  
LSTM

trainf  = 1 kHz, LSTM
testf  = 8 kHz (green) in a DRFOC induction motor drive. Current waveforms in Phase A from the VCS estimator, CS, and LSTM predictor 

and the corresponding prediction error value (a), example approximations of the time instants (b, c) marked on the waveforms from (a). For the yellow 
waveforms, signal-smoothing properties are visible. 
CS, current sensor; DRFOC, direct rotor flux-oriented control; LSTM, long short-term memory; VCS, virtual current sensor.
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Two networks containing nLSTM = 8 and nLSTM = 16 LSTM cells were included in the study. Each of these networks 
was trained for two different values of the input signal sampling frequency. In the first case, it was assumed that 
current signals from the generator with a sampling frequency of fp = 8 kHz were fed to the input of the network 
sample by sample; so, the LSTM network was trained with Xtrain and Ytrain signals with a sampling frequency of 

LSTM
trainf  = 8 kHz. In the second case, the current signals were downsampled, and the sampling frequency of the Xtrain 

and Ytrain network training signals was reduced to LSTM
trainf  = 1 kHz, which corresponds to feeding the network input 

with every eighth sample of the generator signal.
LSTM networks were trained using the ADAM optimisation algorithm. The parameters of the optimisation 

algorithm, described in Subsection 3.2, were a = 0.001, b1 = 0.9, b2 = 0.999, and ε = 10-8. The number of epochs was 
nepoch = 1,000 in each case, and in each epoch, all learning data were reshuffled.

The training process used p = 342 signal sequences. This was done using a minibatch data set. In each epoch, 
mb = 114 sequences were randomly selected from all p sequences, based on which the values of the network 
parameters were updated. The length of each sequence, denoted by Sb, varied and depended on the frequency of 
the first harmonic of the current. The objective function for the minibatch set was equal to the arithmetic mean of 
the objective functions calculated for each of the sequences in the minibatch set according to the following formula:
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(b) (c) 

(a)

Fig. 12. Simulations of the LSTM network in the case of a CS gain-type fault: nLSTM = 16, LSTM
trainf  = 8  kHz, LSTM

testf  = 8  kHz (yellow), and nLSTM = 16, 
LSTM

trainf  = 1 kHz, LSTM
testf  = 8 kHz (green) in a DRFOC field-controlled induction motor drive. Current waveforms in Phase A from the VCS estimator, CS, and 

LSTM predictor and the corresponding prediction error value (a), example approximations of the time instants (b, c) marked on the waveforms from (a). 
For the yellow waveforms, signal-smoothing properties are visible. 
CS, current sensor; DRFOC, direct rotor flux-oriented control; LSTM, long short-term memory; VCS, virtual current sensor.
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In the next steps, a set of other sequences was selected, and the parameters were updated again until all 
p training sequences had been used for the epoch.

5. Analysis of Current Prediction Results
5.1. Assessing the quality of current prediction using LSTM networks
The comparative indicator of network performance quality and prediction precision was the root mean square 
error (RMSE) calculated between the prediction values of Y and the expected values of the Ytest for each test case 
r according to the following formula:
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where Sr is the length of the test sequence numbered r. Results showing histograms of the RMSE values for 
different network structures and the sampling frequencies of the training and testing signals are shown in Figure 7.

Networks with the number of cells nLSTM = 16 obtained significantly better results in terms of the distribution of 
RMSE values in test studies than networks containing a smaller number of cells, i.e., nLSTM = 8. However, increasing 

(a) 

 

(b) (c) 

  
Fig. 13. Simulations of the LSTM network in the case of a CS offset-type fault: nLSTM = 16, LSTM

trainf  = 8  kHz, LSTM
testf  = 8  kHz (yellow); and nLSTM = 16,  

LSTM
trainf  = 1 kHz, LSTM

testf  = 8 kHz (green) in a DRFOC field-controlled induction motor drive. Current waveforms in Phase A from the VCS estimator, CS, and 
LSTM predictor and the corresponding prediction error value (a), example approximations of the time instants (b, c) marked on the waveforms from (a). 
For the yellow waveforms, signal-smoothing properties are visible. 
CS, current sensor; DRFOC, direct rotor flux-oriented control; LSTM, long short-term memory; VCS, virtual current sensor.
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the number of cells in a network does not have the greatest impact on the quality of signal prediction. The most 
significant is the sampling rate of the training signals LSTM

trainf  and the sampling rate of the test signals LSTM
testf . The 

histograms clearly indicate significantly better performance of networks trained with signals with a lower sampling 
frequency LSTM

trainf , regardless of the sampling frequency of the test signals LSTM
testf . Considering the results of the 

distribution of RMSE values shown in Figure 7, the best results were obtained for a network containing nLSTM = 16 
LSTM cells, trained with signals with sampling frequency LSTM

trainf  = 1 kHz and tested with signals with sampling 
frequency LSTM

testf  = 8 kHz. Example network prediction plots for the test data are shown in Figure 8.
As with the analysis of the RMSE index, a visual comparison of the waveforms in Figure 8 reveals a marginally 

significant improvement in the quality of current prediction with an increase in the number of LSTM cells from 
nLSTM = 8 to nLSTM = 16 (Figures 8a, c; Figures 8b, d; Figures 8e, g; and Figures 8f, h). The sampling frequency of the 
training and test signal has a significant effect. Training the network at a training signal sampling rate LSTM

trainf  = 8 kHz 
and then testing it on data with sampling rate LSTM

testf  = 1 kHz delays the performance of the prediction network 
(Figures 8e, g). This way of using the network disqualifies it from further use for signal analysis in an electric drive. 
The network trained for frequency LSTM

trainf  = 1 kHz and tested for frequency LSTM
testf  = 1 kHz (Figures 8f, h) works 

correctly, but the prediction results are not ideal in the initial stage of operation. The network trained for frequency 
LSTM

trainf  = 8 kHz and tested for frequency LSTM
testf  = 8 kHz also works correctly, but the effect of filtering noise from the 

signal is visible (Figures 8a, c). An interesting effect can be observed for a network that was trained on data with 
sampling frequency LSTM

trainf  = 1 kHz and tested on data with sampling frequency LSTM
testf  = 8 kHz (Figures 8b, d). 

(b) 

 

(c) 

 

(a) 

Fig. 14. Simulations of the LSTM network in the case of a CS saturation-type fault: nLSTM = 16, LSTM
trainf  = 8 kHz, LSTM

testf  = 8 kHz (yellow) and nLSTM = 16, 
LSTM

trainf  = 1 kHz, LSTM
testf  = 8 kHz (green) in a DRFOC field-controlled induction motor drive. Current waveforms in Phase A from the VCS estimator, CS, and 

LSTM predictor and the corresponding prediction error value (a), example approximations of the time instants (b, c) marked on the waveforms from (a). 
For the yellow waveforms, signal-smoothing properties are visible. 
CS, current sensor; DRFOC, direct rotor flux-oriented control; LSTM, long short-term memory; VCS, virtual current sensor.
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In this case, the network does not have the properties of filtering the signal but tries to reproduce it in such a way 
that it is as consistent as possible with the actual input.

5.2. Simulation tests of the LSTM predictor in the DRFOC structure
The predictor developed based on the LSTM network was tested in a DRFOC structure for an IM. This structure, 
together with the VCS current estimator and the LSTM network used, is shown in Figure 9.

Simulations were performed in the Matlab/Simulink environment with a computational step of Dts = 6.25 × 10-6 s, 
and the Euler method (ODE, ordinary differential equation; ode1) was used to solve the differential equations 
describing the simulation model. Simulations were carried out for different motor speeds (-wN, –0.5wN, 0.1wN, 0.5wN, 
and wN – rated speed of the IM). The load torque varied from 0 p.u. to the rated mN during the simulation. The 
measured speed and load torque waveforms are shown in Figure 10.

The tests were carried out for two trained networks containing nLSTM = 16 cells. One was trained with signals with 
sampling frequency LSTM

trainf  = 1 kHz and the other with frequency LSTM
trainf  = 8 kHz. Both networks were used to predict 

the signals from the CS and the VCS estimator in Phase A only. Their operating frequency was LSTM
testf  = 8 kHz. 

The selected networks were characterised by the best results obtained in the tests performed on the test data, Ytest.
Figure 11 shows the results of the simulations carried out in the DRFOC structure of the electric drive when 

the CS has not suffered any damage. The waveforms of the output signals from the LSTM network have been 
shifted by one sample on the graph, so that the actual measured or estimated CS signal and the prediction for 
that time instant can be shown. The prediction error signal, calculated as the difference between the measured 
current and the predicted current, was used to compare the performance quality of the two networks. As with the 

Prediction error Fault type

LSTM
trainf LSTM

testf No fault (NF) Gain (G) Offset (OFF) Saturation (SAT)

 
VCS VCS VCS

sA sA predERR i i= − s(ERRVCS) 8 kHz 8 kHz 0.0156 0.0138 0.0156 0.0144

1 kHz 0.0171 0.0157 0.0152 0.0157

 
CS CS CS

sA sA predERR i i= − s(ERRCS)
8 kHz 0.0139 0.0134 0.0132 0.0143

1 kHz 0.0154 0.0117 0.0152 0.0130

CS, current sensor; ERR, error; LSTM, long short-term memory; VCS, virtual current sensor.

Table 2. Standard deviation values for different CS faults and for different LSTM networks containing nLSTM = 16.

Fig. 15. Standard deviation of the prediction error for different CS faults and for different LSTM networks. 
CS, current sensor; ERR, error; G, gain; LSTM, long short-term memory; NF, no fault; OFF, offset; SAT, saturation; VCS, virtual current sensor.
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test results shown in Figure 8, the filtering properties of the network trained on a signal sampled at a frequency  
LSTM

trainf  = 8 kHz can be seen in Figure 11 (yellow waveforms). In each of the time windows shown, this network performs 
prediction and simultaneous filtering of the signal, in contrast to the network that was trained on a signal sampled at  

LSTM
trainf  = 1 kHz (green waveforms). The second network ( LSTM

trainf  = 1 kHz), on the other hand, makes a prediction of 
the signal while retaining the noise present.

The next simulations were performed in a system with a faulty CS in Phase A. The simulated faults included 
gain change (Figure 12), addition of a fixed value to the measurements (offset) (Figure 13), and core saturation 
(Figure 14). The faults were implemented at time t = 2 s and, from this point on, the operation of the speed control 
system used the currents estimated by the VCS estimator in its structure, and the signals from the faulty CSs did 
not affect the operation of the system. The rotor speed and load torque waveforms were as before (Figure 10). In 
each case, the same observations can be made as previously, i.e., the manifestation of the filtering properties of 
the network trained on data with sampling frequency LSTM

trainf  = 8 kHz (yellow waveforms) and the absence of these 
properties for the network trained on data with sampling frequency LSTM

trainf  = 1 kHz (green waveforms).
To assess the quality of the prediction, the standard deviation of the prediction error was calculated as the 

difference between the actual signal and the prediction signal. Networks were tested on a signal sampled at a 

Fig. 16. Standard deviation of the prediction error when the IM parameters are changed for different LSTM networks. The number of LSTM cells was 
nLSTM = 16 and the sampling frequency of the test signals was LSTM

testf  = 8 kHz. 
CS, current sensor; ERR, error; IM, induction motor; lm, the main inductance; LSTM, long short-term memory; rs, stator winding resistance; rr, the rotor 
resistance; VCS, virtual current sensor.

Prediction error Parameter change

LSTM
trainf LSTM

testf 0.75rs 1.25rs 0.75rr 1.25rr 0.75lm 1.25lm

 
VCS VCS VCS

sA sA predERR i i= − s(ERRVCS) 8 kHz 8 kHz 0.0112 0.0112 0.0181 0.0172 0.0246 0.0190

1 kHz 0.0140 0.0147 0.0155 0.0186 0.0186 0.0172

 
CS CS CS

sA sA predERR i i= − s(ERRCS)
8 kHz 0.0135 0.0147 0.0144 0.0214 0.0199 0.0170

1 kHz 0.0130 0.0137 0.0141 0.0156 0.0157 0.0145

CS, current sensor; ERR, error; lm, the main inductance; LSTM, long short-term memory; rs, stator winding resistance; rr, the rotor resistance; VCS, 
virtual current sensor. 

Table 3.  Standard deviation values of prediction errors for different variations of induction motor parameters with undamaged CS for LSTM 
network containing nLSTM = 16.
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frequency LSTM
testf  = 8 kHz. The statistics were determined for the entire run, i.e., from 0 s to 7 s of simulation, and 

are summarised in Table 2 and plotted in Figure 15.
By analysing the data in Figure 15, it can be seen that the standard deviation values calculated for the different 

CS faults and for the different LSTM networks are comparable. This means that the networks trained both for 
LSTM

trainf  = 1 kHz and for LSTM
trainf  = 8 kHz can be considered as good predictive models of stator currents, regardless 

of the type of damage that occurred to the CS.

5.3. Testing the robustness of the LSTM predictor to changes in IM parameters
The described current prediction method was tested for robustness to changing machine parameters. The 
parameters that were changed were the stator winding resistance rs, the rotor resistance rr, and the main inductance 
lm. Changing the values of these parameters has the greatest impact on the performance of the VCS estimator 
(Adamczyk and Orlowska-Kowalska, 2022). Simulation tests were carried out in which the CSs measured the 
correct value and were not damaged in any way. The parameter variations were 75% or 125% of the rated values 
(given in Table A1 of the Appendix). The standard deviation results for a network containing nLSTM = 16 cells, tested 
for an input signal sampling frequency LSTM

testf  = 8 kHz and trained for two different sampling frequencies are shown 
in Table 3 and Figure 16.

(a) 

(b) (c) 

 
Fig. 17. Simulations showing the prediction of VCS currents using the LSTM network when rotor resistance rr changes: rr = 1.25rrN, nLSTM = 16,  

LSTM
trainf  = 8 kHz, LSTM

testf  = 8 kHz (yellow); and nLSTM = 16, LSTM
trainf  = 1 kHz, LSTM

testf  = 8 kHz (green) in a DRFOC induction motor drive. Current waveforms in 
Phase A from the VCS estimator, CS, and LSTM predictor and the corresponding prediction error value (a), example approximations of the time instants 
(b, c) marked on the waveforms from (a). 
CS, current sensor; DRFOC, direct rotor flux-oriented control; ERR, error; lm, the main inductance; LSTM, long short-term memory; rs, stator winding 
resistance; rr, the rotor resistance; VCS, virtual current sensor.
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The results shown above clearly demonstrate the robustness of the developed predictor to changing motor 
parameters. The results of the standard deviation of the prediction errors for the system operating at nominal 
parameters and for the system with changed parameters are comparable. Example waveforms for rr = 1.25rrN are 
shown in Figures 17 and 18.

The significant differences between the currents estimated with VCS and those measured with CS (Figures 17 
and 18) are due to changes in machine parameters and are normal for this estimator, when parameter updates are 
not applied (Adamczyk and Orlowska-Kowalska, 2019, 2022). However, they do not affect the prediction values of 
the currents and the developed LSTM predictor correctly determines the subsequent values of the signals. Thus, it 
can be concluded that the proposed current prediction method is robust to changes in motor parameters.

6. Conclusions
The results of tests carried out on a network composed of LSTM cells, whose task was to predict the currents in 
the stator phases, are presented. The prediction was based on the currently measured and estimated values. A 
comparison was made between different structures, which were trained and tested with software-generated signals 
at different sampling frequencies. Particularly interesting properties were discovered regarding the noise filtering 

(a) 

 

(b) (c) 

  
Fig. 18. Simulations showing the prediction of CS currents using the LSTM network when rotor resistance rr changes: rr = 1.25rrN, nLSTM = 16, 

LSTM
trainf  = 8 kHz, LSTM

testf  = 8 kHz (yellow) and nLSTM = 16, LSTM
trainf  = 1 kHz, LSTM

testf  = 8 kHz (green) in a DRFOC induction motor drive. Current waveforms in 
Phase A from the VCS estimator, CS, and LSTM predictor and the corresponding prediction error value (a), example approximations of the time instants 
(b, c) marked on the waveforms from (a). 
CS, current sensor; DRFOC, direct rotor flux-oriented control; ERR, error; lm, the main inductance; LSTM, long short-term memory; rs, stator winding 
resistance; rr, the rotor resistance; VCS, virtual current sensor.
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at the output of the network, as well as how to train and use the network to obtain the output filter. In the future, 
it may be important to use a filter on the output of the network to detect stator CS faults. The same effect can be 
achieved by training the network with appropriate signals, which will reduce the amount of computation required. 
On the other hand, in predictive control, it is important to obtain the most accurate current values possible. Based 
on the results, it can be concluded that testing the network with a signal sampled at a lower frequency than that 
at which the network was trained significantly delays signal prediction (Figures 8e, g). Testing the network with a 
signal sampled at the same frequency as the training signal allows filtering out of the input noise (Figures 8a, c). 
Testing the network with a signal sampled at a higher frequency than that at which the network was trained allows 
the signal to be reconstructed while retaining the input noise (Figures 8b, d). Particularly noteworthy is the fact that 
the LSTM network trained on software-generated current signals (one period of the signal with different frequencies 
and amplitudes) correctly reproduced the IM stator currents in the DRFOC structure, in the case of various CS 
faults. The tests carried out can be used in the future to respond to emerging CS faults in advance, thus maintaining 
the continuity of drive control.
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Appendix

Symbol [ph.u.] [p.u.]

Rated phase voltage, UN 230 V 0.707

Rated phase current, IN 2.5 A 0.707

Rated power, PN 1.1 kW 0.638

Rated speed, nN 1390 rpm 0.927

Rated torque, MeN 7.56 Nm 0.688

Number of pole pairs, pb 2 -

Rotor winding resistance, rr 4.968 W 0.0540

Stator winding resistance, rs 5.114 W 0.0556

Rotor leakage inductance, lσ r 31.6 mH 0.1079

Stator leakage inductance, lσ s 31.6 mH 0.1079

Main inductance, lm 541.7 mH 1.8498

Rated rotor flux, YrN 0.7441 Wb 0.7187

Mechanical time constant, TM 0.25 s -

Table A1. Induction motor parameters.
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